A synergistic interaction between lapatinib and chemotherapy agents in a panel of cell lines is due to the inhibition of the efflux pump BCRP.
نویسندگان
چکیده
Lapatinib is a specific HER1 and 2 targeted tyrosine kinase inhibitor now widely used in combination with chemotherapy in the clinical setting. In this work, we investigated the interactions between lapatinib and specific chemotherapy agents (cisplatin, SN-38, topotecan) in a panel of cell lines [breast (n = 2), lung (n = 2), testis (n = 4)]. A high-sensitivity cell proliferation/cytotoxicity ATP assay and flow cytometry were used to determine cell viability, apoptosis, and the effect of the drugs on cell-cycle distribution. CalcuSyn analysis was employed to formally identify synergistic interactions between drugs. Intracellular concentrations of SN-38 were measured using a novel high-performance liquid chromatography (HPLC) technique. Flow cytometry and HPLC techniques were used to identify the effect of lapatinib on drug influx and efflux pumps, using specific substrates and inhibitors of these pumps. Results showed significant synergy between SN-38, and lapatinib in the majority of cell lines (combination index < 0.75), associated with increased apoptosis. This synergy was not universal but, when observed (Susa S/R, H1975, H358, and MDA-MB-231 cell lines), was related to SN-38 intracellular accumulation (2.2- to 4.8-fold increase, P < 0.05 for each), attributable to the inhibition of the breast cancer-related protein (BCRP) efflux pump by lapatinib. Flow cytometry analysis showed that lapatinib (10 μmol/L) inhibited the efflux of mitoxantrone, a specific substrate of the BCRP pump, in a manner similar to fumitremorgin C, a known BCRP inhibitor, confirming lapatinib as a BCRP inhibitor. This work shows that lapatinib has a direct inhibitory effect on BCRP accounting for the synergistic findings. The synergy is cell line dependent and related to the activity of specific efflux pumps.
منابع مشابه
Synergistic Effect of Silver Nanoparticles and Streptomycin Antibiotic on the MexX Gene Expression of Pump Efflux System in Drug-Resistant Pseudomonas aeruginosa Strains
Introduction: Pseudomonas aeruginosa is one of the most important infectious agents in humans, which is difficult to control in hospitals due to its resistance to various antibiotics. Efflux pump systems play an important role in the drug resistance of this bacterium to a variety of antibiotics. This study aimed to determine the antimicrobial synergistic effect of silver nanoparticles and the a...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملبررسی اثر مهاری اسانس گیاه آویشن بر روی افلوکس پمپ NorA استافیلوکوکوس اورئوس
Background and Objective: Antibiotic resistant phenotypes of bacteria have been shown to be related to efflux pumps. Research for finding compounds with an ability to inhibit these pumps seems worthwhile due to their ability to increase bacterial sensitivity to antibiotics or return sensitivity to resistant strains. The aim of this study was to evaluate inhibitory effect of Thymus daenensis ess...
متن کاملSynergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition
Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resis...
متن کاملSynthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2010